Skip to content Skip to navigation

Kaldırma Kuvvetini Ölçmek Çok mu Zor?

Doç. Dr. Kemal Yürümezoğlu
19/01/2016 - 11:19

Etkinliğimizde kaldırma kuvvetini basit bir yöntemle ölçerek, sıvıların kaldırma kuvvetine etki eden değişkenleri belirlemeye çalışıyoruz.

Bilmekte fayda var!

Hikâyeye göre Siraküza kralı som altından yeni bir taç yaptırır. Ancak kral, kuyumcunun hile yapıp altına gümüş karıştırdığından kuşkulanır. Bunun üzerine Arşimet’i huzuruna çağırır ve taca gümüş katılıp katılmadığını tacı bozmadan anlamasını ister. Arşimet bu problem üzerine düşünmeye başlar. Bir gün hamamdayken içi tam dolu teknedeki suya girince suyun yükseldiğini hatta taştığını fark eder. Taşan suyun, kendi gövdesinin suya giren kısmının hacmi ile doğru orantılı olduğunu anlayınca “Evraka!”(Buldum!) diye bağırarak hamamdan sokağa fırlar. Dosdoğru saraya giderek taca gümüş katılıp katılmadığını tacı bozmadan bulabileceğini söyler. O gün, Arşimet, suya daldırılan bir nesnenin hacminin, şekli nasıl olursa olsun taşırdığı suyun hacmi ile belirlenebileceğini bulur.

Hikâyenin devamında Arşimet, som altından olduğu iddia edilen tacı suya sokar ve taşırdığı su miktarını ölçer. Daha sonra aynı ağırlıktaki som altın kütleyi suya sokar, daha az miktarda su taşırdığını görür ve kralın ısmarladığı taçtan altın çalındığını anlar. Yani kuyumcu hile yapmıştır.

Arşimet sıvıların kaldırma kuvveti ile ilgili bulduğu ilkeleri Yüzen Cisimler Üzerine kitabında yazar. Arşimet’in adı ile anılan ilke şöyledir: Tümüyle ya da kısmen bir akışkana daldırılmış olan bir cisim, yer değiştiren akışkanın ağırlığına eşit ve bu akışkanın ağırlık merkezinden geçen düşey bir kuvvetle yukarı doğru itilir.

Yer değiştiren akışkanın kütlesi , ağırlığı ise kadardır. Bu ağırlık akışkana daldırılan cisme etki eden kaldırma kuvvetinin  büyüklüğüne eşittir.

Burada;  yer değiştiren akışkanın yoğunluğu, cismin sıvıya daldırılan (sıvı ile temas eden) kısmının hacmi, g yerçekimi ivmesidir.

Gelin, şimdi yapacağımız üç deneyle kaldırma kuvvetine nelerin etki ettiğini bulmaya çalışalım.  

Nelere ihtiyacımız var?

·  Eşit hacimde kurşun, demir, pirinç ve alüminyum metal kancalı küpler (3,2 cm x 3,2 cm x 3,2 cm boyutlarında)

·  Beher

·  Elektronik terazi

·  İki adet metal çubuk

·  Bir adet üç ayaklı destek

·  Bir adet bağlama parçası

·  İp (tercihen misina)

·  Su

·  Sıvı yağ

Kaldırma Kuvveti Cismin Yoğunluğuna Bağlı mıdır?

Ne yapıyoruz?

İlk önce küplerin kütle ve hacim değerlerini bulalım. Bunun için önce her bir küpü ayrı ayrı elektronik terazide tartıp kütlelerini not edelim. Her bir kenarı a=3,2 cm olan bu küplerin hacimlerini V=a3  bağıntısını kullanarak hesaplayalım. Bulduğumuz değerleri aşağıdaki gibi bir tabloya yazalım.

Daha sonra bu cisimleri suya tam olarak daldıralım ve suyun cisimlere etki ettiği kaldırma kuvvetini bulmaya çalışalım.

İşe alüminyum cisme etki eden kaldırma kuvvetini bulmakla başlayabiliriz. İlk olarak elektronik teraziyi açıp dijital gösterge sıfır gösterinceye kadar terazinin dengesini ayarlayalım. Bir behere yarıyı geçecek şekilde su dolduralım. Daha sonra beheri elektronik terazi üzerine koyup darasını alalım yani terazinin gösterdiği değeri sıfırlayalım.

Sonra alüminyum cismi üç ayaklı destek ve bağlama parçası yardımıyla metal çubuğa asalım ve tamamen su içinde kalacak şekilde behere daldıralım. Terazinin gösterdiği değeri not edelim.

Elektronik terazinin gösterdiği yeni değerin, yerçekimi ivmesi ile çarpımı doğrudan suya daldırılan cisme etki eden kaldırma kuvvetidir. Bu ölçme işlemini şu şekilde açıklayabiliriz: Ölçüm öncesi su ve terazi ile asılı küp ve ipler üzerinde kuvvetler dengedir. Cismi suya daldırdığımızda kaldırma kuvveti oluşur ve bu kuvvet cismi yukarı doğru iter. Benzer şekilde cisim de suya karşı zıt yönde ve aynı büyüklükte bir tepki kuvveti oluşturur. Terazinin ölçtüğü değerin yerçekimi ivmesi ile çarpımı, suyun cisme etki ettiği kaldırma kuvvetine eşit büyüklükte ve zıt yönde olan kuvvettir.

Deneyin yapılışını aşağıdaki videodan izleyebilirsiniz.

Aynı işlemleri kurşun, demir ve pirinç cisimler için de tekrarlayıp sonuçları tablo haline getirelim.  

Daha sonra kütle ve hacim değerlerini kullanarak cisimlerin birim hacimdeki madde miktarlarını yani yoğunluklarını hesaplayalım. Elde ettiğimiz bütün verileri aşağıdaki gibi bir tabloda toplayabiliriz.

Ne oldu?

Eşit hacme sahip farklı ağırlıktaki alüminyum kurşun, demir ve pirinç cisimlerin yoğunlukları ( ) birbirinden çok farklıdır. Ancak bu cisimlere etki eden kaldırma kuvveti yaklaşık olarak aynı büyüklüktedir. Buna göre, sıvı içindeki cisme uygulanan kaldırma kuvveti cismin yoğunluğuna bağlı değildir.

Kaldırma Kuvveti Batan Cismin Hacmine Bağlı mıdır?

Ne yapıyoruz?

Bu deneyde cismin sudaki kısmının hacmini değiştirmenin kaldırma kuvvetine bir etkisi olup olmadığını gözlemlemeye çalışıyoruz. Deneyimize yine alüminyum cisimle başlayabiliriz. Bir önceki deneyde bu cismin tamamı suya daldırıldığında etki eden kaldırma kuvvetini, Fk (gcm/s2) = 32,74 x yerçekimi ivmesi olarak bulmuştuk. Bu defa alüminyum cismin asılı olduğu ipi kısaltarak cismin yarıdan daha az kısmının su içinde kalmasını sağlayalım ve cisme etki eden kaldırma kuvvetini hesaplayalım. Bu durumda terazinin gösterdiği değer 13,92 g, kaldırma kuvveti ise Fk (gcm/s2) = 13,92 x yerçekimi ivmesidir.

Ne oldu?

Cismin suya batan kısmını azalttığımızda, göstergedeki değerin cismin tamamının suda olduğu durumdakinden daha küçük olduğunu gördük. Buna göre, kaldırma kuvveti sıvı ile temas eden hacme bağlı olarak değişiyor, hacim azaldıkça kaldırma kuvveti de azalıyor.

Kaldırma Kuvveti Sıvının Yoğunluğuna Bağlı mıdır?

Ne yapıyoruz?

Kaldırma kuvvetinin cismin daldırıldığı sıvıya bağlı olup olmadığını görmek için su yerine sıvı yağ kullanıyoruz. Bunun için beheri sıvı yağ ile doldurup alüminyum cismi yağın içerisine tamamen daldırarak cisme etki eden kaldırma kuvvetini ölçüyoruz.

Su kullandığımızda Fk (gcm/s2)= 32,74 x yerçekimi ivmesi iken, bu deneyde Fk (gcm/s2)= 30,10 x yerçekimi ivmesi olduğunu gözlemliyoruz.

Ne oldu?

Bu deneyde sıvı yağ ile elde ettiğimiz sonucun, yani cisim yağa daldırıldığında cisme etki eden kaldırma kuvvetinin suya göre daha az olduğunu bulduk. Suyun oda sıcaklığındaki yoğunluğu 0,998 g/cm3, kullandığımız sıvı yağın yoğunluğu ise 0,919 g/cm3 olduğuna göre, kaldırma kuvvetinin sıvının yoğunluğuna bağlı olduğunu görebiliriz. Buna göre, sıvının yoğunluğu arttıkça cisme etki eden kaldırma kuvveti artarken, sıvının yoğunluğu azaldıkça cisme etki eden kaldırma kuvveti azalmıştır.

Kaynaklar:

  • Keller, F. J ve ark., Physics II (2. Baskı), New York, 1993.
  • Oğuz, A., ve  Yürümezoğlu, K., “Experiment clarifies buoyancy”, Physics Education, Cilt 43, Sayı 3, s. 247, 2008.

İlgili İçerikler

Fizik

Deneyler köşesinin bu etkinliğinde yüzey gerilimi etkisiyle yüzen kâğıttan bir balık tasarlıyoruz.

Fizik

Fosil yakıtların alternatifi olabilecek yenilenebilir enerji kaynaklarının bulunmasına ve yaygınlaştırılmasına yönelik çabalar gün geçtikçe artıyor.

Fizik

Genel görelilik kuramı geliştirildiğinden beri pek çok testten başarıyla geçti. Astronomy & Astrophysics dergisinde yayımlanan bir makalede araştırmacılar, genel görelilik kuramının tahminleriyle uyumlu sonuçlar elde etti.

Fizik

Deneyler köşesinin bu etkinliğinde yoğunluk ve basınç kavramlarından yararlanarak kendi kartezyen dalgıcımızı tasarlıyoruz.

Fizik

Metalik mavi renkli kelebekler, yanardöner renkli meyveler, altın rengi kabuğa sahip böcekler... Peki, bu renklerin hiçbirinin kaynağının boyalar ya da pigmentler olmadığını biliyor muydunuz? Öyleyse bu ışıl ışıl parıldayan renkler nasıl ortaya çıkıyor?

Fizik

ABD’de uzunluk ölçüsü olarak metre yerine yard, feet ve inç; kütle ölçüsü olarak kilogram yerine pound ve ons gibi metrik olmayan ölçü birimlerinin kullanılması dikkatinizi çekmiştir. Peki, ABD’de bu ölçü birimlerinin kullanılmasında Karayip korsanlarının da payı olduğunu biliyor muydunuz?

Fizik

Elektrik ve nükleer enerji santrallerinde soğutma amacıyla kullanılan suların büyük kısmı buharlaşarak atmosfere karışır. Massachusetts Teknoloji Enstitüsü’nde çalışan bir grup araştırmacı bu kayıp suları geri kazanmak için yeni bir yöntem geliştirdi.

Fizik

Mikroakışkan çipler, mikrolitre ve daha küçük hacimlerdeki akışkanların mikro ölçekteki (metrenin milyonda biri) kanallar içerisinde kontrol edilm

Fizik

Baryon grubu parçacıklar üç kuarktan oluşur. Uluslararası bir araştırma grubu, di-Omega olarak adlandırılan bir parçacığın doğada var olabileceğini ileri sürdü. Baryon türü iki omega parçacığının bir araya gelmesiyle oluşan di-Omegaların Avrupa ve Japonya’daki parçacık hızlandırıcılarda üretilebileceği düşünülüyor.

Fizik

Farklı düğüm yapılarının dayanıklılıkları üzerine pek çok araştırma yapıldıysa da bir düğümün nasıl olup da kendi kendine açıldığına dair bir çalışma yapılmamıştı. Ta ki bir akademisyen küçük kızının ayakkabı bağcıklarının neden sürekli çözüldüğünü merak edene kadar. Bunun üzerine iki öğrencisiyle birlikte koşu sırasında ayakkabı bağcığının ne gibi etkilere maruz kaldığını yakından gözlemledi.