Skip to content Skip to navigation

Binom Açılımı ve Pascal Üçgeni

Dr. Mahir E. Ocak
07/11/2017 - 09:19

Matematiksel işlemlerde çok sık karşılaşılan ifadelerden biri (x+y)n. Genellikle bu ifadedeki x ve y herhangi iki sayı, n ise bir tam sayıdır. Bu ifadenin eşitini bulmanın en basit yolu n tane (x+y) terimini birbiriyle çarpmaktır. Fakat n'nin büyük olduğu durumlarda bu işlemi yapmak çok uzun sürer. Binom açılımı olarak bilinen bir yöntem ile bu ifadenin eşiti çok daha kolay bir şekilde bulunabilir.

İfadenin eşiti açık olarak yazıldığı zaman bütün terimler a+b=n olmak üzere, xayb şeklinde olacaktır. Bu terimlerin katsayılarına binom katsayıları denir. Genel olarak binom açılımı şu şekilde ifade edilebilir:

Bu ifadedeki katsayıların değeri (!) faktöriyel işlemi olmak üzere, şöyle bulunabilir:

Örneğin n=2 olduğu zaman binom açılımı katsayıları 1, 2 ve 1 olur. Bu (x+y)2 = x2 + 2xy + y2 anlamına gelir. n küçük olduğu zaman ifadenin eşitini bulmak için terimleri birbiriyle çarpmak da pratik bir yol olabilir, fakat n büyük olduğu zaman binom açılımını kullanmak çok daha kolaydır. Üstelik binom katsayılarını hesaplamak için yukarıdaki formülü kullanmaktan çok daha pratik bir yol var. Öncelikle birinci ve sonuncu katsayıların her zaman 1 olduğuna dikkat edin. Şimdi, yan kenarları alt alta yazılmış 1'lerden oluşan bir üçgen yapın (bkz. alttaki şekil). Daha sonra her satırda yan yana bulunan iki sayının altındaki satıra ve sayıların ortasına bu sayıların toplamını yazın. Örneğin ikinci satırda iki tane 1 yan yana durduğu ve iki tane 1'in toplamı 2 olduğu için üçüncü satırın ortasına 2 yazın. Benzer şekilde, yukarıdan aşağıya doğru giderek üçgenin içini doldurmaya devam edin. Bu üçgenin her bir satırındaki sayıları incelediğiniz zaman sırasıyla belirli bir n değerine karşılık gelen tüm binom sayılarını bulacaksınız. Örneğin ikinci satırdaki 1, 1 sayıları n=1'e karşılık gelen katsayılar, dördüncü satırdaki 1, 3, 3, 1 sayıları ise n=3'e karşılık gelen katsayılardır. Pascal üçgeni olarak adlandırılan bu üçgeni kullanarak tüm binom katsayıları hesaplanabilir. Böylece binom açılımı yapmak çok kolaylaşır.

Pascal üçgeninin pek çok ilginç özelliği var. Bunlardan biri Pascal üçgeninin simetrik olmasıdır. Üçgenin ortasına dikey bir simetri ekseni çizerseniz, bu simetriyi kolayca görebilirsiniz. Örneğin beşinci satırdaki 4'ler, altıncı satırdaki 10'lar ve yedinci satırdaki 15'ler bu eksene göre simetriktir.

Pascal üçgeninin diğer bir özelliği satırlarındaki sayıların toplamının 2'nin kuvvetlerini vermesidir. Bunun doğruluğunu binom açılımında x ve y yerine 1 koyarak görebilirsiniz. Ayrıca satırlardaki sayıları yan yana tek bir sayı gibi okursanız 11'in kuvvetlerini bulursunuz. Bunun doğruluğu ise binom açılımında x=1, y=10 yazılarak görülebilir. Örneğin üçüncü satırdaki 1, 2, 1 sayıları bir araya getirildiğinde 11'in ikinci kuvveti olan 121 sayısını verir. Dördüncü satırdaki sayıların bir araya getirilmesi ile elde edilen 1331 sayısı ise 11'in üçüncü kuvvetidir. Katsayıların tek basamaklı olmadığı durumlar ise biraz daha karmaşıktır, fakat bu durumlarda da ufak bir çaba ile 11'in kuvvetleri bulunabilir.

Pascal üçgenini kullanarak Fibonacci sayıları da bulunabilir. Fibonacci serisi ilk iki terimi 1 olan bir seridir. Bu serinin elemanları olan Fibonacci sayıları ise kendinden önceki iki sayının toplamına eşittir. Örneğin bu serinin ilk birkaç elemanı şunlardır: 1, 1, 2, 3, 5, 8, 13, 21, 34. Bu serideki 8 sayısı kendinden önceki iki sayının (3 ve 5) toplamıdır. Aynı şekilde 34 sayısı da 13'ün ve 21'in toplamıdır. Pascal üçgeninden aşağıdaki şekilde gösterildiği gibi diyagonal parçalar alırsanız, her parçadaki sayıların toplamının Fibonacci sayılarını verdiğini göreceksiniz.

Pascal üçgeninde bulunabilecek diğer sayılar üçgen sayılarıdır. Sadece noktalar kullanarak üçgen şekilleri yapmaya çalıştığınızı düşünün. Önce üçgenin tepesi için bir nokta, sonra bu noktanın altına üçgen oluşturacak şekilde iki nokta, daha sonra bu noktaların altına üç nokta, ... Her bir üçgeni yapmak için kullandığınız noktaların sayısı üçgen büyüdükçe 1, 3, 6, 10,... olarak devam eder. Bu sayıları Pascal üçgeninin ikinci iç diyagonalinde bulabilirsiniz.

Bir başka özellik Mersenne sayıları ile ilgilidir. 1'den ve kendisinden başka böleni olmayan sayılara asal sayılar denir. Mersenne sayıları ise n bir tam sayı olmak üzere, 2n-1'e eşit olan sayılardır ve n bir asal sayı olduğu zaman bu sayılar da birer asal sayı olur. Örneğin bir asal sayı olan 3'e karşılık gelen Mersenne sayısı 23-1=7'dir. Benzer şekilde 5'e karşılık gelen Mersenne sayısı 25-1=31'dir. Pascal üçgenini herhangi bir satırdan böler ve yukarıda kalan üçgendeki tüm sayıları toplarsanız Mersenne sayılarını verdiğini göreceksiniz.

Pascal üçgeninin yukarıda anlatılan tüm özellikleri ve daha başkaları binom katsayılarının değerleri kullanılarak ispatlanabilir. Siz de yukarıda saydığımız özellikleri kendiniz ispatlamaya çalışabilirsiniz. Pascal üçgeni ile ilgili ilginç başka özelliklere ise aşağıdaki bağlantı adresini kullanarak ulaşabilirsiniz.

http://phys.org/print306750350.html

İlgili İçerikler

Matematik

Bir ülkedeki bazı kent ikilileri arasında, her kentten tam olarak 10 farklı kente yapılacak şekilde karşılıklı uçak seferleri düzenleniyor. Herhangi bir A kentinden uçak seferi yapılmayan...

Matematik

Ayın Matematik Sorusu köşesinde Temmuz 2018 sorusunu doğru çözenler belli oldu. Doğru çözümü gönderme zamanına göre sıralanmış ilk 10 okurumuz Bilim Genç'ten kitap hediyesi kazandı.

Matematik

TÜBİTAK Türkiye Sanayi Sevk ve İdare Enstitüsü (TÜSSİDE) bu yıl ilk defa lise öğrencilerine yönelik matematik bilim kampı düzenliyor. Matematik Bilim Kampı 2018’e katılmak isteyenler için son başvuru tarihi 3 Ağustos 2018.

Matematik

Keloğlan tahtaya bir tam sayı yazıyor. Daha sonra yedi cücenin her biri, kendisinden önce yazılmış sayılardan küçük olmayacak şekilde tahtaya birer sayı yazıyor. Tahtaya yazılmış ilk yedi sayının...

Matematik

Ayın Matematik Sorusu köşesinde Haziran 2018 sorusunu doğru çözenler belli oldu.

Matematik

1, 2, ... , 101 sayıları bir çemberin etrafına rastgele diziliyor. Saat yönündeki komşusuyla bölünebilen sayılara “mutlu sayı” diyelim. Bir dizilişte en fazla kaç “mutlu sayı” bulunabilir?

Matematik

Ayın Matematik Sorusu köşesinde Mayıs 2018 sorusunu doğru çözenler belli oldu. Doğru çözümü gönderme zamanına göre sıralanmış ilk 10 okurumuz Bilim Genç'ten kitap hediyesi kazandı.

Matematik

Ayın Matematik Sorusu köşesinde Nisan 2018 sorusunu doğru çözenler belli oldu.

Matematik

10x10’luk satranç tahtasının birim karelerinden bazılarına birer taş yerleştirilmiştir. Her köşegen üzerinde en fazla üç taş bulunabiliyorsa, satranç tahtasının üzerinde en fazla kaç taş olabilir?

Matematik

Her biri 2x2 birim karelik birkaç karton parçası, 13x13 birim karelik bir satranç tahtasının üzerine, karton parçalarının her biri satranç tahtasının...