Skip to content Skip to navigation

DNA Origami

Dr. Öğr. Üyesi Ümit Hakan Yıldız
26/03/2018 - 16:45

Japon kâğıt katlama sanatı origami ile birbirinden farklı objeler tasarlamak mümkün. Peki aynı el sanatını kâğıt yerine DNA’yı (deoksiribonükleik asit) kullanarak gerçekleştirebilir miyiz?

İnsanoğlu uygarlığın başlangıcından itibaren çok büyük yapıların nasıl inşa edileceğini öğrendi. Yaklaşık kırk yıldır ise çok küçük yapıların nasıl üretilebileceği üzerinde çalışılıyor.

Kaliforniya Teknoloji Enstitüsü’nden (Caltech) Paul Rothemund ve bu alanda çalışan diğer bilim insanları nano ölçekte (metrenin milyarda biri) yapıların nasıl inşa edileceğine dair farklı yöntemler üzerinde çalışıyor. Nano ölçekteki DNA yapılarının kendiliğinden bir araya gelmesi ilkesine dayanan bu yenilikçi yaklaşım “küçük dünyalarda” “büyük işlerin” gerçekleştirilmesine imkân sağlayabilir.

Nature - Hadi bize gülümse! Soldaki görselde DNA’dan üretilen yapının bilgisayardaki tasarımı görülüyor. Sağdaki görselde DNA parçaları ile oluşturulan origami şekli görülüyor.

Canlıların genetik kodunu saklayan DNA, son yıllarda nano boyutta tasarım yapan araştırmacıların yararlandığı bir makromolekül. Bunun iki nedeni var: İlki DNA’nın çift sarmal şeklindeki yapısının keşfedilmesinden bu yana geçen 65 yılda DNA’nın kendine özgü üç boyutlu yapıya sahip olmasını sağlayan mekanizmalar hakkında detaylı bilgiler elde edilmiş olması. Bu, bir DNA dizisinin katlanarak alabileceği şekillerin tahmin edilmesini sağladı.

DNA’nın birbirine sarmal şekilde bağlanmış iki zincirden oluştuğu 1953’te Prof. Dr. James Watson ve Prof. Dr. Francis Crick tarafından keşfedilmişti.

İkincisi ise DNA moleküllerinin hızlı, basit ve otonom bir şekilde sentezlenmesini sağlayan yöntemlerin geliştirilmesi. Bu sayede 100 ve daha fazla nükleotidden oluşan DNA molekülleri kolayca sentezlenebiliyor.

DNA, nükleotid olarak isimlendirilen molekül birimlerinin birbirine bağlanması sonucu oluşur.

DNA molekülünden nano boyutta yapılar tasarlamak için kullanılan yöntemlerden biri New York Üniversitesi’nden Prof. Dr. Nadrian C. Seeman tarafından geliştirilen "döşeme modeli". Bu yöntem farklı şekillerdeki (örneğin kare, dikdörtgen) kilitli taşların bir araya gelmesiyle oluşan kaldırım döşemelerine benzetilebilir.

Bu yöntemde iki boyutlu, dikdörtgen şekilli DNA blokları yapı taşı olarak kullanılır. DNA çift sarmalının ucunda kısa tek zincirli bölümler bulunur. Bunlar “yapışkan uçlar” olarak isimlendirilir. İki farklı DNA bloğunun yapışkan uçları -cırt cırtlı bantların yapışarak birbirini tutmasına benzer şekilde- birleşerek daha büyük ve karmaşık şekilli yapılar oluşturabilir.

Scripps Araştırma Enstitüsü’nden Prof. Dr. William M. Shih ve arkadaşları ise DNA molekülünü kullanarak nano boyutta yapılar oluşturmak için farklı bir yöntem kullandı. Geliştirilen yöntem sayesinde 1669 nükleotidden oluşan tekli DNA zinciri kendiliğinden katlanarak nano boyutta bir düzgün sekiz yüzlü oluşturdu. Ana DNA zincirinin üzerindeki belirli bölgelerdeki kısa DNA zincirleri molekülün istenilen şekilde kendiliğinden katlanmasını sağladı. Bu yöntem sayesinde DNA molekülleri kullanılarak üç boyutlu yapılar oluşturulabildi.

Kaliforniya Teknoloji Enstitüsü’nden (Caltech) Paul Rothemund bu iki yöntemi birleştirerek istenilen şekilde iki boyutlu DNA yapılar oluşturulmasına imkân veren yeni bir yöntem geliştirdi.

 

Bu yöntem farklı aşamalardan oluşur:

  • İlk adımda tasarlanacak şekil (örneğin yuvarlak bir gülen yüz) seçilir.
  • Daha sonra dikdörtgen şeklindeki DNA bloklarıyla belirlenen şekil oluşturulur.
  • Sonraki aşamada uzun tekli bir DNA zinciri ikili sarmal yapıdaki DNA bloklarının üzerinden ileri ve geri katlanarak ilerler. Bu sırada DNA zincirleri arasında bağlantılar kurulur.
  • Kısa DNA zincirleri kullanılarak, katlanan DNA zinciri sabitlenir.

 

Nature - Paul Rothemund bu yöntemi kullanarak beş köşeli yıldız, gülen yüz gibi altı farklı şekil oluşturdu.

DNA temelli nano ölçekteki yapıların tasarımı ve üretimi ile bu malzemelerin yapısal ve kimyasal özelliklerinin anlaşılması sayesinde gelecekte çok farklı alanlarda kullanılabilecek daha küçük yapılar ve cihazlar geliştirmek mümkün olabilir.

 

Kaynaklar:

 

Yazar Hakkında:
Dr. Öğr. Üyesi Ümit Hakan Yıldız
İzmir Yüksek Teknoloji Enstitüsü Kimya Bölümü
 

İlgili İçerikler

Biyoloji

Yapılan farklı araştırmalar karıncaların kendi vücut ağırlıklarının 10-50 kat fazlasını taşıyabildiklerini gösteriyor. Peki, karıncalar nasıl bu kadar kuvvetli olabiliyor?

Biyoloji

Yenilenebilir enerji kaynaklarının tercih edildiği, su ve enerjinin verimli kullanıldığı, hava kalitesinin artırıldığı, geri dönüştürülebilen malzemelerden yapılan yeşil binalar içinde yaşayanların verimliliğini artıracak şekilde tasarlanıyor.

Biyoloji

İskorpitgiller takımında yer alan uçan kırlangıç balığı dünyada tuzlu, sıcak ve ılıman denizlerde yaşar.

Biyoloji

Karbon, azot, fosfor, kükürt, hidrojen ve oksijen canlıların yapısında bulunan temel elementlerdir. Bu elementler ekosistemde sürekli olarak bir formdan başka bir forma dönüştürülür ve canlılar tarafından yaşamsal faaliyetler için tekrar tekrar kullanılır. 

Biyoloji

Türkiye doğasında zehirli ve zehirsiz birçok büyük mantar türü bulunuyor. Mantarların zehirli olup olmadığını anlamak ise hiç kolay değil. Çünkü aynı ortamda yaşayabilen mantarlar şekillerine, renklerine ve kokularına göre kolayca ayırt edilemezler.

Biyoloji

Hücrelerimizde genetik bilgiyi taşıyan molekül olan DNA’nın keşfinden bu zamana kadar hayli yol alındı. Bu yıl 66.’sı kutlanan 25 Nisan DNA Günü’nde, 1860’lardan bugüne kadar genler üzerinde yapılan araştırmalara ve bu alanda yürütülen büyük projelere göz atmaya ne dersiniz? 

Biyoloji

TÜBİTAK Bilim ve Toplum Daire Başkanlığı, 2014’ten beri yürüttüğü ve 40.000’den fazla öğrenciye ulaştığı TÜBİTAK Bilim Söyleşileri’ni tüm Türkiye’ye ulaştırmak için bir portal hazırladı.

Biyoloji

Kemiriciler takımında yer alan su kemesi (Arvicola terrestris), Avrupa’dan Batı Sibirya ve Güneybatı Asya’ya kadar geniş bir bölgede yaşar. Ülkemizde de birçok bölgede görülür. Su kemesi yarı sucul yani su kenarında yaşayan fakat suya doğrudan bağımlı olmayan bir kemirici türüdür. 

Biyoloji

Atmacagiller ailesinin bir üyesi olan şah kartal dünyada Kıbrıs da dâhil olmak üzere Güney Avrupa’dan Güney Rusya’ya kadar geniş bir alanda yaşar. Türkiye’de ise özellikle İç Anadolu ve Ege taraflarında görülür.

Biyoloji

Chicago Illinois Üniversitesi’nden iki araştırmacı artan karbondioksit miktarını azaltmak için yapay yaprakların doğal ortamda da fotosentez yapabilmesi sağlayan yeni bir yöntem geliştirdi.