Skip to content Skip to navigation

Proton Fizikçilerin Düşündüğünden Daha Küçük

Doç. Dr. Timur Şahin
19/12/2019 - 18:02

Yakın zamanda gerçekleştirilen deneyler protonun fizikçilerin düşündüğünden %5 daha küçük olduğunu gösteriyor.

Peki, Protonun Yarıçapı Nasıl Ölçülüyor?

Fizikçiler protonun yarıçapını ölçmek için çoğunlukla iki yöntem kullanır. İlki atom içerisinde elektronların çekirdek etrafında nasıl dolandıkları ile ilişkili. Elektronlar çekirdek etrafındaki belirli yörüngelerde dolanır. Çekirdekteki protonların boyutları, elektronların çekirdeğe ne kadar güçlü bağlı olduğunu etkiler. Bilim insanları spektroskopi (tayf analizi) yöntemi ile elektronların dolandığı yörüngelerin enerjilerini kesinliği yüksek bir şekilde bulabiliyor. Bu sayede protonun yarıçapı tahmin edilebiliyor. Saçılma yöntemi olarak isimlendirilen diğer yöntemde ise atomlar, çok küçük parçacıklar örneğin elektronlar ile bombardıman ediliyor. Parçacıklar çarpıştıktan sonra çekirdekten ne kadar uzaklaştıkları ölçülüyor.

Yaklaşık on yıl önce bu iki yöntem kullanılarak yapılan deneyler birbiriyle uyumlu şekilde protonun yarıçapının 0,877 femtometre yani 0,877x10-15 metre olduğunu gösteriyordu.

2010’da bir grup fizikçi protonun yarıçapını tahmin etmek için yeni bir yöntem kullandı. Bu yöntemde müonik hidrojen olarak isimlendirilen sıradışı bir hidrojen atomu üretildi. Bu atomlar, bir proton ve bir elektrondan oluşan sıradan hidrojenden farklı olarak elektron yerine müon içerir. Müonun kütlesi elektronunkinden yaklaşık 200 kat fazladır. Bu nedenle müonun enerji seviyeleri çekirdekteki protondan elektronun enerji seviyelerine göre daha güçlü etkilenir. Müonik hidrojenle spektroskopi yöntemi kullanılarak yapılan ölçümler sıradan hidrojenle yapılan ölçümlere göre protonun yarıçapının milyon kez daha duyarlı ölçülebilmesine imkân veriyor. Bu yöntem kullanılarak protonun yarıçap değeri 0,842x10-15 metre olarak belirlendi.

Hidrojen atomu

Bazı bilim insanları protonun yarıçapıyla ilgili ölçüm sonuçlarındaki bu farklılığın elektron ve müonun farklı fiziksel süreçlerde farklı biçimlerde davranmasından kaynaklandığını düşünüyor. Bu, ışık-madde etkileşimini esas alan kuantum teorisi alanında çalışan bilim insanları için son derece üzücü bir durum. Çünkü deneylerle elektronların ve müonların fiziksel süreçlerde farklı biçimlerde davrandığı gösterilirse modern fiziğin temel ilkelerinden biri yanlışlanacak ve araştırmacıların yeni teoriler geliştirmeye çalışması gerekecek.

Eylül 2019’da sonuçları Science dergisinde yayımlanan araştırmada bir grup bilim insanı spektroskopi yöntemini geliştirmeyi başardı ve sıradan hidrojeni kullanarak yaptıkları deneylerde protonun yarıçapını 0,833x10-15 metre olarak belirledi. Bu değer müonlar kullanılarak elde edilen değer ile uyumlu.

 

Ya Saçılma Yöntemi?

Sonuçları kasım ayında Nature dergisinde yayımlanan çalışmada ise bilim insanları saçılma deneyleri ile protonun yarıçap değerini ölçtü. Sonuçlar protonun yarıçapının 0,831x10-15 metre olduğunu gösteriyor. PRad olarak adlandırılan deney, ABD’deki Thomas Jefferson Ulusal Hızlandırıcı Merkezindeki parçacık hızlandırıcıda gerçekleştirildi.

Deneyde hızlandırılmış elektronlar hidrojen molekülleri ile çarpıştırılıyor. Çarpışmalarda elektronların kazandığı hızlar önemli. Elektronun hızının büyük olması sahip olacağı hareket enerjisinin de büyük olması anlamına geliyor. Geçmişte saçılma deneylerinde yüksek enerjili elektronlar kullanılıyordu. Ancak bu, protonun yarıçapının yüksek kesinlikte ölçülmesini zorlaştırıyordu. PRad deneyinde ise düşük enerjili elektronlar kullanıldı.

DOE's Jefferson Lab - ABD Thomas Jefferson Ulusal Hızlandırıcı Merkezindeki CEBAF parçacık hızlandırıcı

Bu deney düzeneğinde öncekilerden farklı olarak hidrojen molekülleri kapalı bir metal hazne içerisinde tutulmuyor, hareket hâlindeki elektronların yolunun üzerine doğrudan enjekte ediliyor. Böylece metal haznenin yüzeyine çarpan elektronların sebep olacağı olumsuz etkiler engellenmiş oluyor.

Bu sonuçlar protonun yarıçapının belirlenmesinde kullanılan iki yöntem ile elde edilen sonuçların birbiriyle uyumlu olması açısından hayli önemli. Çünkü bu sayede müonun ve elektronun davranışları arasında bir farklılık olmadığı anlaşıldı.

Protonun yarıçapının büyük bir kesinlikle belirlenmesi, aynı zamanda doğru olduğu varsayılan kuramların test edilmesi ve muhtemel yanlışların tespit edilmesi açısından da önem taşıyor. Bazı araştırmacılar daha kesin ölçümler yapabilmek için deneylerin geliştirilmeye devam edilmesi gerektiğini söylüyor.

 

Kaynaklar:

 

Yazar Hakkında:
Doç. Dr. Timur Şahin
Akdeniz Üniversitesi Uzay Bilimleri ve Teknolojileri Bölümü

İlgili İçerikler

Fizik

Ses günlük hayatımızın önemli bir parçası olmasına rağmen sesin ardındaki fiziksel süreçler dikkatimizi çekmemiş olabilir. Bu fiziksel süreçleri daha iyi anlayabilmek için sesi “görmeye” ne dersiniz?

Fizik

2014 yılında Türkiye’nin kendi teknolojisini kullanarak fotovoltaik (FV) temelli güneş enerjisi santral ekipmanlarını üretmesi ve ihraç etmesi amacıyla MİLGES (Millî Güneş Enerjisi Santrali Geliştirilmesi) projesi başlatılmıştı.

Fizik

Bu etkinliğimizde maliyeti uygun malzemeler ile iletken ve yalıtkan dedektör düzeneği tasarlıyoruz.

Fizik

Deneyler köşesinin yeni etkinliğinde Faraday kafesinin çalışma prensibini ve günlük hayatımızda nerelerde kullanıldığını öğreniyoruz.

Fizik

Bu etkinliğimizde maliyeti uygun malzemeler kullanarak sabit makaralar, kaldıraç ve tekerleklerden oluşan ve bir bileşik makine olan “lastik tekerlekli vinç” düzeneği tasarlayacağız.

Fizik

Deneyler köşesinin bu etkinliğinde basit bir kondansatör tasarlayıp birçok elektrik devresinde kullanılan bu elektronik devre elemanının çalışma prensibini öğreniyoruz.

Fizik

Yenilenebilir enerji kaynaklarının başında güneş enerjisi geliyor. Ancak güneş ışığından aldığı enerjiyi elektriğe dönüştüren geleneksel fotovoltaik gözeler sadece gündüzleri çalışıyor. Gündüzleri elde edilen enerjiyi geceleri kullanabilmek içinse başka enerji biçimlerine dönüştürüp depolamak gerekiyor.

Fizik

Fren pedalına hafif bir dokunmayla, yüklü bir kamyonun nasıl durduğunu öğrenmek ister misiniz? Sürücü tarafından fren pedalına uygulanan kuvvet, fren hidroliği tarafından balatalara iletilir. Balatalar da tekerleklerle bağlantılı fren disklerini sıkıştırarak aracın yavaşlamasını ve durmasını sağlar.

Fizik

Yarasalar ilgi çekici bir özelliğe sahip: Ses dalgalarını kullanarak tamamen karanlık bir ortamda çevrelerindeki nesnelerin yerini belirleyebiliyorlar. Görme engelli bazı insanların da bu özelliğe sahip olduğu biliniyor.

Fizik

Tasarla ve Yap köşesinin bu etkinliğinde maliyeti uygun malzemeler kullanarak elektrik enerjisi elde edip enerjiyi ışık, hareket ve ses enerjisine dönüştüren bir düzenek tasarlayacağız.