Skip to content Skip to navigation

Rüzgârölçer

Namdar Gürsönmez
30/09/2019 - 17:25

Bilim insanları, günlük hava tahmini için çeşitli gözlemler ve ölçümler yapar. Bunların arasında rüzgâr hızı ölçümleri de vardır.

Yatay yönde meydana gelen hava hareketine rüzgâr denir. Rüzgârı göremeyiz ama çevremizdeki etkilerini hissederiz. Atmosferdeki iki nokta arasında basınç farkı oluştuğunda yüksek basınçlı noktadan düşük basınçlı noktaya doğru bir hava akımı başlar. Böylece rüzgâr ortaya çıkar. Rüzgârlar hızlarına göre farklı isimler alır: bora, kasırga, fırtına...

Rüzgârın hızını ölçen aletlere anemometre (rüzgârölçer) denir. Bu etkinliğimizde maliyeti uygun malzemeler kullanarak bir rüzgârölçer tasarlayacağız.

 

Nelere İhtiyacımız Var?

  • 1 adet 9 x 17 cm boyutlarında duralit
  • 2 adet 1,5 x 1,5 x 9 cm boyutlarında tahta
  • 1 adet 1,5 x 1,5 x 24 cm boyutlarında tahta (bir ucunda 0,5 cm çapında bir delik olmalı)
  • 1 adet 2 cm uzunluğunda vida
  • 2 adet tahta çubuk (dondurma çubuğu ya da tahta dil basacağı)
  • 2 adet pinpon topu
  • 1 adet dinamo
  • 1 adet kırmızı krokodil kablo
  • 1 adet siyah krokodil kablo
  • Silikon tabancası ve silikon
  • Çift taraflı bant
  • Multimetre
  • Mini testere
  • Makas veya maket bıçağı
  • Tornavida
  • Cetvel
  • Kalem

Uyarı:

Kesici ve delici aletler dikkatli kullanılmalıdır.

 

Ne Yapıyoruz?

 

1. Etkinliğimize düzeneğimizin kanat bölümünü hazırlayarak başlıyoruz.

 

. Tahta çubukların orta noktasında, görseldeki gibi, mini testereyi kullanarak 0,5 cm kadar girinti yapacak şekilde birer kesik yapalım.

 

. Pinpon toplarını makas veya maket bıçağı yardımı ile keserek dört yarımküre elde edelim.

. Silikon kullanarak tahta çubukları kesikli yerlerinden artı işareti oluşturacak şekilde birbirine sabitleyelim. Pinpon toplarından oluşturduğumuz yarımküreleri ise, görseldeki gibi, silikon ile tahtalara sabitleyelim.

 

2. Bu aşamada rüzgârölçerin taban kısmını hazırlıyoruz.

. Çift taraflı bant kullanarak 1,5 x 1,5 x 9 cm boyutlarındaki tahta parçalarını 9 x 17 cm boyutlarındaki duralitin tabanına sabitleyelim.

 

. 1,5 x 1,5 x 24 cm boyutlarındaki tahtayı, tornavida ve vida kullanarak, düzeneğimizin taban kısmına görseldeki gibi sabitleyelim.

 

3. Dinamoyu, görseldeki gibi, silikon kullanarak tahtaya sabitleyelim. Bu işlemi yaparken dinamonun (+) ve (-) kutuplarını da tespit edelim.

 

4. Artı şeklindeki kanat bölümünü silikon kullanarak dinamonun miline sabitleyelim.

 

5. Artık rüzgârölçer düzeneğimizi kullanarak rüzgârın hızını ölçebiliriz.

6. Rüzgârlı bir alanda rüzgârın belli bir sürede (örneğin 30 saniyede) kanatları kaç kez döndürdüğünü sayarak gözlem çizelgemize not edelim.

. Şimdi de dinamonun (+) kutbuna kırmız krokodil kabloyu, (-) kutbuna ise siyah krokodil kabloyu bağlayalım. Krokodil kabloların diğer uçlarını ise multimetreye bağlayalım. Multimetreyi voltmetre konumuna getirerek rüzgârlı bir alanda rüzgârın etkisi ile dinamonun ürettiği elektrik akımın gerilimini ölçerek gözlem çizelgemize not edelim.

. Bu ölçümü farklı zamanlar yaparak gözlem notlarımızı karşılaştıralım.

 

Ne OIdu?

Rüzgâr yarımküreleri iterek kanatları döndürür. Rüzgâr ne kadar hızlı eserse kanatlar da o kadar hızlı döner.

Multimetrenin ölçtüğü gerilim, dönme hızıyla ve dolayısıyla rüzgârın hızıyla doğru orantılıdır.

 

Kaynak:

  • Komisyon, 8. Sınıf Fen ve Teknoloji Ders Kitabı, Millî Eğitim Bakanlığı Yayınevi, 2012.
  • Saan, V., Her Güne Bir Deney, Çev.: Esen Tezel, Yapı Kredi Yayınları, 2013.
Yazar Hakkında:
Namdar Gürsönmez
Fen Bilimleri Öğretmeni
İzmir Çiğli-Karşıyaka Aydoğan Yağcı Bilim ve Sanat Merkezi

 

İlgili İçerikler

Fizik

Montreal Üniversitesindeki Ötegezegen Araştırmaları Enstitüsünden bilim insanları üç yıl önce keşfettikleri, Dünya’ya yaklaşık 111 ışık yılı mesafedeki K2-18 sistemindeki bir gezegenin atmosferinde su buharı tespit etti.

Fizik

Boğaziçi Üniversitesi Elektroteknoloji Kulübü ve IEEE Öğrenci kolu tarafından düzenlenen Boğaziçi Enerji Zirvesi’nin beşincisi 16 Kasım’da Boğaziçi Üniversitesi Albert Long Hall Kültür Merkezi’nde gerçekleştiriliyor.

Fizik

Çoğu zaman farkında olmasak da dalga ve dalga hareketinin yaşamın ve hayatımızın her alanında etkisi var. Bazen hayatımızı kolaylaştıran dalgaların bazı zaman da yıkıcı etkileri ile karşılaşıyoruz. Peki, dalgalar olmasaydı hayatımız nasıl olurdu?

Fizik

Nobel Fizik Ödülü’nün 2019 yılı sahipleri Princeton Üniversitesinden James Peebles, Cenova Üniversitesinden Michel Mayor ve Cambridge Üniversitesinden Didier Queloz oldu.

Fizik

Biyokütle ve Kömür Karışımlarından Sıvı Yakıt Üretimi (TRİJEN) projesi sayesinde Türkiye’nin linyit kömürleri sıvı akaryakıtlara ve değerli kimyasal maddelere dönüştürülebiliyor. Böylece düşük enerji içeriğine sahip linyit kömürlerinin etkin, verimli ve çevre dostu bir şekilde ekonomiye kazandırılması mümkün olabilecek.

Fizik

Bu yıl sekizincisi düzenlenen Breakthrough Ödülleri’nde temel fizik alanındaki ödülün sahibi ilk karadelik görüntüsünün elde edilmesi çalışmasını gerçekleştiren araştırmacılar oldu. Ödül kazanan araştırmacılar arasında Türk bilim insanı Prof. Dr. Feryal Özel de bulunuyor.

Fizik

Ay'a ulaşmamızı sağlayan en önemli teknolojilerden biri roketlerdi. Peki, roketler nasıl çalışıyor? Deneyler köşesinin bu etkinliğinde bir araba tasarlayarak Newton'un hareket yasalarını ve roketlerin çalışma prensibini öğreniyoruz.

Fizik

Söz konusu elektronlar, protonlar gibi “noktasal” parçacıklar olduğunda aynı işaretli elektrik yüklerinin birbirini ittiği, zıt işaretli elektrik yüklerinin birbirini çektiği bilinir. Ancak çok sayıda elektrik yüklü noktasal parçacığın bir araya gelmesiyle oluşan “bileşke” parçacıklarda durum farklıdır. 

Fizik

Danimarkalı gökbilimci Ole Christensen Romer, ışık hızını belirlemek için çalışmalar yapan ilk bilim insanlarından biridir. Romer, yaptığı uzun süreli gözlemler sonucunda Jüpiter’in uydularından Io’nun iki tutulması arasında geçen zamanlarda farklılıklar tespit etti.

Fizik

Bu etkinliğimizde yenilenebilir enerji kaynaklarından güneş enerjisinin farklı enerji türlerine dönüştüğünü gözlemleyebileceğimiz bir düzenek tasarlayacağız.