logo
Menü
Giriş yap Üye ol
  • Anasayfa Anasayfa
Popüler Bilim

Popüler Bilim

Soru - Cevap

Soru - Cevap

Tasarla ve Yap

Tasarla ve Yap

Deneyler

Deneyler

Bilim Genç TV

Bilim Genç TV

Gökbilim

Gökbilim

Yeryüzü

Yeryüzü

Sesli Yayın

Sesli Yayın

Bilim Çizgi

Bilim Çizgi

Periyodik Tablo

Periyodik Tablo

Yeryüzü

Bunu Biliyor muydunuz?

Yarışmalar

Yarışmalar

  • Popüler Bilim Bilim Genç' i Tanıyın
    • - Bilim Genç Hakkında
    • - Ekibimiz
    • - İçerik Kullanım Şartları
    • - İletişim
  • Bilim Genç TÜBİTAK’ın dijital ortamda ücretsiz popüler bilim yayınıdır.

logo
Arama
Giriş yap
  • Popüler Bilim Popüler Bilim
  • Soru - Cevap Soru - Cevap
  • Tasarla ve Yap Tasarla ve Yap
  • Deneyler Deneyler
  • Bilim Genç TV Bilim Genç TV
  • Yarışmalar Yarışmalar
  • Gökbilim Gökbilim
  • Yeryüzü Yeryüzü
  • Sesli Yayın Sesli Yayın
  • Bilim Çizgi Bilim Çizgi
  • Bunu Biliyor muydunuz? Bunu Biliyor muydunuz?
  • Periyodik Tablo Periyodik Tablo
  • Popüler Bilim Bilim Genç' i Tanıyın
    • - Bilim Genç Hakkında
    • - Ekibimiz
    • - İçerik Kullanım Şartları
    • - İletişim
  • Bilim Genç TÜBİTAK’ın dijital ortamda ücretsiz popüler bilim yayınıdır.

Çivi Kullanılmadan Yapılan Bir Köprü mü? Cambridge Matematik Köprüsü

Bilim Genç Kafede Bilim Etkinliği: Uzayı ve Yıldızları Neden Araştırıyoruz?

Dijital Obez miyim? Dijital Araçların Aşırı Kullanımı Yaşam Memnuniyetimizi Azaltıyor!

Tek Sağlık Nedir?

Geri Dönüştürülmüş Plastik Gerçekten Çevre Dostu mu?

Bilim Genç Kafede Bilim Etkinliği: Sıfırın Altında Bilim: Antarktika ve Arktik Maceraları

Kadınlar Erkelerden Daha Fazla Uykuya mı İhtiyaç Duyuyor?


Yüzey Döşemeleri

Dr. Mahir E. Ocak
25/09/2018

Özdeş geometrik şekiller kullanarak yüzeyleri döşemek, çok eski zamanlardan beri insanların zihnini meşgul eden matematik problemlerinden biri. Bu amaçla kullanılabilecek çeşitli şekiller biliniyor. 

Yüzey Döşemeleri

Özdeş geometrik şekiller kullanarak yüzeyleri döşemek, çok eski zamanlardan beri insanların zihnini meşgul eden matematik problemlerinden biri. Bu amaçla kullanılabilecek çeşitli şekiller biliniyor. 1918 yılında Karl Reinhardt yüzey döşemesi olarak kullanılabilecek tüm geometrik şekillerin bulunması ve listelenmesi konusunda bir çalışma başlattı. Aradan geçen zamanda amatörler de dâhil olmak üzere pek çok matematikçi bu konu üzerinde çalıştı. En son 2015 yılında 30 yıl aradan sonra yeni bir beşgen keşfedildi. Ancak listenin tamamlanıp tamamlanmadığı, başka bir deyişle hâlâ yeni geometrik şekiller keşfetmenin mümkün olup olmadığı bilinmiyordu. Michaël Rao, arXiv’e yüklediği bir makalede mümkün olan tüm geometrik şekillerin keşfedildiğini gösterdi.

 

Üçgen Yüzey Döşemeleri

Herhangi bir üçgenle yüzey döşemek mümkündür (bkz. aşağıdaki şekiller).

Wikipedia

 

Dörtgen Yüzey Döşemeleri

Üçgenlerde olduğu gibi herhangi bir dörtgenle de yüzeyleri döşemek mümkündür (bkz. aşağıdaki şekiller).

http://www.tonibest.com/cdn/6/2002/430/

 

Altıgen Yüzey Döşemeleri

Üçgenlerin ve dörtgenlerin aksine herhangi bir altıgenle bir yüzeyi döşemek mümkün değildir. Bir yüzeyi hiç boşluk bırakmaksızın kaplayabilecek üç tür altıgen olduğu biliniyor.

b=e, B+C+D=360°

 

b=e, d=f, B+C+E=360°

 

a=f, b=c, d=e, B=D=F=120°

Düzgün altıgen yukarıdaki türün tüm kenarları birbirine eşit olan özel bir durumudur.

 

Yedigen ve Daha Büyük Çokgenler

Yedigenlerle ve daha büyük çokgenlerle bir yüzeyi döşemek mümkün değildir.

 

Beşgenler

Yüzey döşemeleri konusunda matematikçilerin zihnini en çok meşgul eden çokgenlerin beşgenler olduğu söylenebilir. Düzgün beşgenlerle (tüm kenarları aynı uzunlukta beşgenlerle) hiç boşluk bırakmaksızın bir yüzeyi kaplamak imkânsızdır. Ancak düzgün olmayan beşgenlerle mümkündür. 1918-2015 arasında 15 ayrı tür beşgenin bu amaçla kullanılabileceği bulunmuştu. Ancak gelecekte başka tür beşgenlerin de keşfedilmesinin mümkün olup olmadığı bilinmiyordu.

Michaël Rao ilk olarak bir yazılım yardımıyla tüm olasılıkları taramış ve 371 tür beşgenin yüzey döşemesi olarak kullanılabilecek potansiyele sahip olduğunu görmüş. Daha sonra bu beşgen türlerinin tamamını tek tek test etmiş ve sadece 19’unun gerekli tüm koşulları sağladığını belirlemiş. Bu 19 türün 15’i daha önceden de bilinenler. Geriye kalan 4 türse sadece diğer 15 türün özel durumları (bkz. aşağıdaki şekil). Dolayısıyla Rao’nun çalışmaları bugün yüzey döşemesi olarak kullanılabilecek tüm beşgen türlerinin ve dolayısıyla tüm çokgen türlerinin zaten bilindiğini ve gelecekte yeni türlerin keşfedilemeyeceğini gösteriyor. Böylece yüz yıldır matematikçilerin zihnini meşgul eden bir soru da cevaplanmış oluyor.

 

 

 

Konu
Geometri

paylaş

En Çok Okunan Makaleler

Lise Öğrencileri İçin 2025 Yılı TÜBİTAK Bilim Kamplarına Katılım Başvuruları Başladı!

Duyurular • 02-01-2025

Bilim Genç’e İçerik Hazırlamak İster misiniz?

Duyurular • 12-05-2025

Chandra, Yeni Tip Kozmik Nesneden Gelen Düzenli Sinyaller Tespit Etti

Haberler • 30-05-2025

Pestisit Nedir? Pestisitler Zararlı mıdır?

Haberler • 30-04-2025

Kozmik Gezegen Otopsisi: Yıldızına Yaklaşarak Atmosferine Dalan Gezegen

Gökbilim • 29-04-2025

Gökyüzünde Gezegen Şöleni

Haberler • 25-01-2025

Keçilerin Göz Bebekleri Neden Dikdörtgen Şeklindedir?

Soru - Cevap • 15-02-2025

Astronot Suni Williams Uzay Yürüyüşünde Rekor Kırdı

Haberler • 31-01-2025

Meşhur Matematik Problemi: ‘‘Taşınan Kanepe Problemi’’ Çözüldü

Haberler • 30-01-2025

Anadolu Parsının En Net Görüntüsü Kaydedildi

Haberler • 07-12-2024

Bilim Genç Logo
Tekrardan Hoşgeldiniz!

Bilim Genç’in kozmik derinliklerinde yolculuğa başlamak için giriş yapın.

Bir hesabınız yok mu? Üye olun

Sayfayı Paylaş
Twitter'da paylaş telegram'da paylaş Whatsapp'da paylaş facebook'da paylaş
Bağlantıyı kopyala
baylaş