logo
Menü
Giriş yap Üye ol
  • Anasayfa Anasayfa
Popüler Bilim

Popüler Bilim

Soru - Cevap

Soru - Cevap

Tasarla ve Yap

Tasarla ve Yap

Deneyler

Deneyler

Bilim Genç TV

Bilim Genç TV

Gökbilim

Gökbilim

Yeryüzü

Yeryüzü

Sesli Yayın

Sesli Yayın

Bilim Çizgi

Bilim Çizgi

Periyodik Tablo

Periyodik Tablo

Yeryüzü

Bunu Biliyor muydunuz?

Yarışmalar

Yarışmalar

  • Popüler Bilim Bilim Genç' i Tanıyın
    • - Bilim Genç Hakkında
    • - Ekibimiz
    • - İçerik Kullanım Şartları
    • - İletişim
  • Bilim Genç TÜBİTAK’ın dijital ortamda ücretsiz popüler bilim yayınıdır.

logo
Arama
Giriş yap
  • Popüler Bilim Popüler Bilim
  • Soru - Cevap Soru - Cevap
  • Tasarla ve Yap Tasarla ve Yap
  • Deneyler Deneyler
  • Bilim Genç TV Bilim Genç TV
  • Yarışmalar Yarışmalar
  • Gökbilim Gökbilim
  • Yeryüzü Yeryüzü
  • Sesli Yayın Sesli Yayın
  • Bilim Çizgi Bilim Çizgi
  • Bunu Biliyor muydunuz? Bunu Biliyor muydunuz?
  • Periyodik Tablo Periyodik Tablo
  • Popüler Bilim Bilim Genç' i Tanıyın
    • - Bilim Genç Hakkında
    • - Ekibimiz
    • - İçerik Kullanım Şartları
    • - İletişim
  • Bilim Genç TÜBİTAK’ın dijital ortamda ücretsiz popüler bilim yayınıdır.

Bilim Genç Kafede Bilim Etkinliği: Yeryüzünde Depremler Oluyor Peki Yıldızlarda?

Soğan Doğrarken Gözler Neden Yanar, Nasıl Önlenir?

Ay’a Gitmek Neden Önemli?

Ayın Şifrebilim Sorusu – Haziran 2025

Ayın Şifrebilim Sorusunun Cevabı – Mayıs 2025

Satranç Haziran 2025

Alerjik Rinit ve Bahar Alerjisi Belirtileri, Tedavi Yolları


Sihirli Kareler

Dr. Elif Ebren Kaya
09/11/2021

1’den 9’a kadar olan sayıları sadece birer kez kullanarak, tüm satır ve sütunlar ile köşegenlerde bulunan sayıların toplamı eşit olacak şekilde 3x3’lük bir kare oluşturabilir misiniz?

Sihirli Kareler

Lo shu karesi

3x3’lük bir kareye 1’den 9’a kadar olan sayılar görseldeki gibi yerleştirildiğinde ‘’3’lü sihirli kare’’ elde edilir. Görseldeki 3’lü sihirli kareye Lo shu karesi de denir. Bu kareye sihirli kare denmesinin nedeni, sayıların belirli bir düzene göre dizilmesidir. Lo shu karesinin tüm satır ve sütunları ile köşegenlerinde bulunan sayıların toplamı hep aynı sayıya yani 15’e eşittir.

Efsaneye göre ‘‘Lo nehri yazısı’’ anlamına gelen Lo shu karesini MÖ 23. yüzyılda Antik Çin’de Kral Yu’nun Lo Nehri’ndeki bir kaplumbağanın kabuk deseninde gördüğü rivayet edilir.

Lo shu karesinden başka ‘’3’lü sihirli kareler’’ de vardır. Lo shu karesini merkezi etrafında 90°, 180° ve 270° döndürdüğümüzde elde ettiğimiz kareler de birer sihirli karedir.   

Ayrıca, Lo shu karesi ve döndürülmüş Lo shu karelerinin ayna yansımaları da birer sihirli karedir ve toplamda sekiz adet 3’lü sihirli kare bulunur.

Peki, 3’lü sihirli karelerden başka sihirli kareler var mı?

Cevabımız “evet”. Sihirli kareler bir kenarda bulunan hücre sayısına göre isimlendirilir ve her bir kenardaki hücre sayısı artırılarak daha büyük dereceli sihirli kareler oluşturulabilir. Örneğin 4’lü, 5’li ve n’li sihirli kareler gibi... Sihirli karelerin derecesi büyüdükçe o derece için sihirli kare sayısı da artar. Fakat belirli bir derece için kaç farklı sihirli kare bulunduğunu veren bir formül ise bulunmuyor.

Sihirli kareler, kenarlardaki hücre sayısının tek veya çift oluşuna göre de isimlendirilebilir. Örneğin 4’lü sihirli karenin ‘’çift sihirli kare’’ ve 5’li sihirli karenin ‘’tek sihirli kare’’ olarak adlandırılması gibi...

Bir n’li sihirli kare, 1’den n2’ye kadar olan farklı tam sayıların kare şeklinde dizilmesiyle oluşur. Öyle ki karenin tüm satır, sütun ve köşegenlerinde bulunan sayıların toplamı birbirine eşittir. Bu karede bulunan tam sayıların toplamı sihir kareler formülü’dir. Yine bu karede toplamda n tane satır veya sütun olduğu için her bir satırdaki veya sütundaki sayıların toplamı sihir kareler formülü formülüyle bulunur. Örneğin 5’li sihirli karedeki tüm sayıların toplamı 325’e ve bu karenin her bir satır, sütun ve köşegeninde bulunan sayıların toplamı 65’e eşittir.

Peki, 5’li sihirli kareyi nasıl oluşturabiliriz?

Öncelikle 5’li bir sihirli kare oluşturmak için birçok farklı yöntem kullanılabilir. Bizim kullanacağımız yöntem ise bunlardan sadece biri.

1 sayısını karenin en üst sırasının tam ortasındaki hücreye yerleştirerek başlayalım.

Tek Sihirli Kareler

Sonraki sayıları eğer yer varsa bir önceki sayının hep sağ üst çaprazındaki hücreye yazalım. Ancak 1’den sonra 2 sayısı için sağ üst çaprazda yer olmadığından, 2’yi sağdaki sütunun en altındaki hücreye yerleştirelim. Burada sihirli karenin en üst satırdan sonra en alttaki satır ile devam ettiğini düşünebiliriz. Daha sonra 3 sayısını 2’nin sağ üst çaprazındaki hücreye yazalım.

Şimdi 4 sayısını yerleştirmeliyiz fakat 3’ün sağ üst tarafında yerimiz yok, karenin dışına çıkıyoruz. Bu durumda sağdaki son sütundan sonra soldaki ilk sütun devam ediyormuş gibi düşünebilir ve 4’ü şekildeki gibi yerleştirebiliriz.

Tek Sihirli Kareler

5 sayısını ise 4’ün sağ üst çaprazına yerleştirdiğimizde aşağıdaki gibi bir kare elde ederiz.

Tek Sihirli Kareler

6 sayısını 5’in sağ üst çaprazına yazamayız çünkü orada 1 sayısı var. Böyle bir durumda yeni sayımız bir önceki sayının hemen altında yer almalı. Yani 6 sayısını 5’in altına yazalım.

Tek Sihirli Kareler

Artık diğer sayıları nasıl yerleştireceğimizi biliyoruz. 7 sayısını 6’nın sağ üst çaprazına, 8’i ise 7’nin sağ üst çaprazına yerleştirelim.

Tek Sihirli Kareler

9 sayısını 8’in sağ üst çaprazında hücre bulunmadığı için son sütunun en alt satırına yazalım. Aynı şekilde 9’un sağ üst çaprazında yer olmadığı için 10 sayısını ilk sütunun dördüncü satırına yerleştirelim.

11 sayısını 10’un sağ üst çaprazına yazamayız. O yüzden 11 sayısını 10’un hemen altındaki hücreye yazalım. Diğer sayılarımızı sırasıyla bir önceki sayının sağ üst çaprazındaki hücreye yerleştirelim.

16 sayısını yazmamız gereken yerde 11 sayısı olduğu için 16 sayısını 15’in hemen altına yazalım. Daha sonra 17, 18, 19 ve 20 sayılarını önceki sayılarda olduğu gibi yerleştirelim.

21 sayısını 20’nin hemen altındaki hücreye yazmamız gerektiğini biliyoruz. 22 sayısını da 21’in sağ üst çaprazına yazalım.

Tek Sihirli Kareler

Son üç sayımızı da yerleştirdiğimizde 5’li sihirli karemizi oluşturmuş oluruz.

Tek Sihirli Kareler

Oluşturduğumuz 5’li sihirli karenin merkezine eşit uzaklıkta olan karşılıklı hücrelerdeki sayıların toplamlarının, birbirlerine ve merkezde bulunan sayının iki katına eşit olduğunu fark etmişsinizdir.

Tek Sihirli Kareler

Araştıralım!

5’li sihirli karemizi oluşturmak için izlediğimiz yöntemle tek sihirli karelerin tümünü oluşturabiliriz. Fakat 4’lü, 6’lı ve 8’li gibi çift sihirli kareleri bu yöntemle oluşturamayız. Çift sihirli karelerin nasıl oluşturulacağını da kendiniz araştırarak öğrenebilirsiniz.

Kaynaklar:

  • https://www.nature.com/articles/26099
  • http://www.matematikdunyasi.org/?article=sihirli-kareler

 

 

 

Konu
Sayılar
Mantık Bulmacası

paylaş

En Çok Okunan Makaleler

Chandra, Yeni Tip Kozmik Nesneden Gelen Düzenli Sinyaller Tespit Etti

Haberler • 30-05-2025

Lise Öğrencileri İçin 2025 Yılı TÜBİTAK Bilim Kamplarına Katılım Başvuruları Başladı!

Duyurular • 02-01-2025

Bilim Genç’e İçerik Hazırlamak İster misiniz?

Duyurular • 12-05-2025

Pestisit Nedir? Pestisitler Zararlı mıdır?

Haberler • 30-04-2025

Kozmik Gezegen Otopsisi: Yıldızına Yaklaşarak Atmosferine Dalan Gezegen

Gökbilim • 29-04-2025

Bilim Genç Kafede Bilim Etkinliği: “Antarktika Hikâyeleri”

Duyurular • 24-04-2025

Gökyüzünde Gezegen Şöleni

Haberler • 25-01-2025

Keçilerin Göz Bebekleri Neden Dikdörtgen Şeklindedir?

Soru - Cevap • 15-02-2025

Astronot Suni Williams Uzay Yürüyüşünde Rekor Kırdı

Haberler • 31-01-2025

Meşhur Matematik Problemi: ‘‘Taşınan Kanepe Problemi’’ Çözüldü

Haberler • 30-01-2025

Bilim Genç Logo
Tekrardan Hoşgeldiniz!

Bilim Genç’in kozmik derinliklerinde yolculuğa başlamak için giriş yapın.

Bir hesabınız yok mu? Üye olun

Sayfayı Paylaş
Twitter'da paylaş telegram'da paylaş Whatsapp'da paylaş facebook'da paylaş
Bağlantıyı kopyala
baylaş